Multi-site-specific 16S rRNA methyltransferase RsmF from Thermus thermophilus.
نویسندگان
چکیده
Cells devote a significant effort toward the production of multiple modified nucleotides in rRNAs, which fine tune the ribosome function. Here, we report that two methyltransferases, RsmB and RsmF, are responsible for all four 5-methylcytidine (m(5)C) modifications in 16S rRNA of Thermus thermophilus. Like Escherichia coli RsmB, T. thermophilus RsmB produces m(5)C967. In contrast to E. coli RsmF, which introduces a single m(5)C1407 modification, T. thermophilus RsmF modifies three positions, generating m(5)C1400 and m(5)C1404 in addition to m(5)C1407. These three residues are clustered near the decoding site of the ribosome, but are situated in distinct structural contexts, suggesting a requirement for flexibility in the RsmF active site that is absent from the E. coli enzyme. Two of these residues, C1400 and C1404, are sufficiently buried in the mature ribosome structure so as to require extensive unfolding of the rRNA to be accessible to RsmF. In vitro, T. thermophilus RsmF methylates C1400, C1404, and C1407 in a 30S subunit substrate, but only C1400 and C1404 when naked 16S rRNA is the substrate. The multispecificity of T. thermophilus RsmF is potentially explained by three crystal structures of the enzyme in a complex with cofactor S-adenosyl-methionine at up to 1.3 A resolution. In addition to confirming the overall structural similarity to E. coli RsmF, these structures also reveal that key segments in the active site are likely to be dynamic in solution, thereby expanding substrate recognition by T. thermophilus RsmF.
منابع مشابه
Mutations in conserved helix 69 of 23S rRNA of Thermus thermophilus that affect capreomycin resistance but not posttranscriptional modifications.
Translocation during the elongation phase of protein synthesis involves the relative movement of the 30S and 50S ribosomal subunits. This movement is the target of tuberactinomycin antibiotics. Here, we describe the isolation and characterization of mutants of Thermus thermophilus selected for resistance to the tuberactinomycin antibiotic capreomycin. Two base substitutions, A1913U and mU1915G,...
متن کاملMutational analysis of 16S and 23S rRNA genes of Thermus thermophilus.
Structural studies of the ribosome have benefited greatly from the use of organisms adapted to extreme environments. However, little is known about the mechanisms by which ribosomes or other ribonucleoprotein complexes have adapted to functioning under extreme conditions, and it is unclear to what degree mutant phenotypes of extremophiles will resemble those of their counterparts adapted to mor...
متن کاملA mutation in the decoding center of Thermus thermophilus 16S rRNA suggests a novel mechanism of streptomycin resistance.
A spontaneous kanamycin resistance and capreomycin resistance mutation, A1408G, in the decoding center of 16S rRNA, was identified in the extreme thermophile Thermus thermophilus. Unexpectedly, this mutation also confers resistance to streptomycin. We propose a novel mechanism of streptomycin resistance by which A1408G influences conformational changes in 16S rRNA during tRNA selection.
متن کاملThermus thermophilus 16S rRNA is transcribed from an isolated transcription unit.
A cloned 16S rRNA gene from the extreme thermophilic eubacterium Thermus thermophilus HB8 was used to characterize the in vivo expression of the 16S rRNA genes in this organism by nuclease S1 mapping. The gene represents an isolated transcription unit encoding solely 16S rRNA. Under exponential growth conditions, transcription was initiated at a single promoter, which represents the structural ...
متن کاملA Comparison of Structural and Evolutionary Attributes of Escherichia coli and Thermus thermophilus Small Ribosomal Subunits: Signatures of Thermal Adaptation
Here we compare the structural and evolutionary attributes of Thermus thermophilus and Escherichia coli small ribosomal subunits (SSU). Our results indicate that with few exceptions, thermophilic 16S ribosomal RNA (16S rRNA) is densely packed compared to that of mesophilic at most of the analogous spatial regions. In addition, we have located species-specific cavity clusters (SSCCs) in both spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RNA
دوره 16 8 شماره
صفحات -
تاریخ انتشار 2010